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TOSCA 

 A Comprehensive Brain-based Cognitive Architecture 
September 27, 2006 

 
This document is an initial draft of the design of the TOSCA architecture. Our goal above all else 
was to be comprehensive – to provide a design for a complete mind that is grounded in the brain. 
Of necessity in a project this ambitious, our design is still incomplete in many details, but where it 
is incomplete we have included the known constraints that a final design will have to meet. 
Completing the architecture will require an exploration, which we will pursue using the TOSCA 
framework (see Appendix). The TOSCA framework is a software infrastructure that directly 
supports expressing the connectivity constraints of the brain, while providing the flexibility to 
rapidly develop alternative implementations of the functional modules and state variables that 
make up the TOSCA architecture.  
 
TOSCA Participants (funded under BICA Phase I)  
BICA Thrust A:  

• Michigan (John Laird, Richard Lewis, Thad Polk, Doug Pearson (Three Penny))  
• MIT (Cynthia Breazeal, Linda Smith (Indiana), Larry Barsalou (Emory))  

BICA Thrust B:  
• Dartmouth (Richard Granger, Carey Priebe (Johns Hopkins), Anna Tsao (Algotek)) 
• Harvard (Stephen Kosslyn, Bruce Draper (CSU))  
• Rutgers (Mark Gluck)  

 
1. Introduction and overview  
 
Our design of TOSCA starts at the brain system and circuits levels. In developing an initial 
version of TOSCA, we’ve chosen to intentionally abstract away from much of the complexity of 
the brain. Many brain systems include multiple subsystems that are extremely complex in their 
own right (e.g., vision and hearing within sensory systems) and the sophisticated computational 
mechanisms underlying these systems are important, but we first need to define the “forest” – the 
overall architecture with the major pieces and how they fit together, before we get to the “trees”. 
This is purely a tactical decision to get us started and we fully plan to greatly expand the systems 
and subsystems in TOSCA in the future. Our strategy is to include those neural systems that we 
consider most important in constructing an initial functional architecture that provides end to end 
behavior.  
 
The document has the following structure. In Section 2 we identify the innovative claims of our 
design that distinguish it from other approaches to systems and circuit level models of the brain. 
Section 3 describes the high-level structure of the architecture in terms of the basic (repeated) 
architectural loops connecting major cortical and subcortical regions. This basic loop includes 
perception, categorization (with clustering), access to memories, internal and external actions and 
action selection, as well as feedback. Section 4 then lays out in more detail the major theoretical 
commitments concerning the operation of each of the major brain subsystems and their inter-
connections, and initial assumptions about representation, time-course, and algorithms. In Section 
5, we identify the key emergent functional properties that derive from the integration of the 
components; many of these properties concern the multi-faceted nature of learning in the system.  
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2. Innovative claims  
 
Some of the basic assumptions underlying TOSCA are shared by other system and circuit level 
models of the brain. Nevertheless, we list them here because they are quite different from the 
assumptions underlying most standard symbolic AI systems and many cognitive models: 

• Brain as control system, but no central controller.  
• Asynchronous, parallel, distributed processing.  
• Multiple internal memories at different temporal and spatial scales. 
• Continuous learning throughout subsystems.  
• Specialization/localization of function and content, but unifying cross-function/cross-

content processing principles.  
 
TOSCA itself is distinguished by an innovative set of claims concerning the computational 
structures and algorithms that give rise to cognition in the brain: 

• Perception:  
• Top-down processing plays a dominant role in perception.  

• Categorization and Identification:  
• Internal representations are learned by building clusters of sequences of clusters 

across all sensory modalities. 
• Internal knowledge representation, learning, memory, and use: 

• Knowledge is represented as distributed multi-modal structures, but with local 
structure.  

• Mental operation selection: 
• Mental (internal) operations use the same basic brain structures as external action 

selection.  
• Action learning: 

• Intrinsic reward based reinforcement learning drives learning of external and 
internal action selection. 

• Integration: 
• By integrating these different learning mechanisms in a complete architecture, the 

resulting whole should be more powerful than the sum of the parts. Incorporating 
intrinsic rewards allows useful learning to occur from simple exploration without 
any explicit task. Learning over mental operations as well as motor actions leads to 
the development of cognitive skills as well as motor skills. And combining 
reinforcement learning with clustering over state and action representations makes 
possible the acquisition of complex skills contingent upon very abstract features.  

 
The TOSCA architecture is more than a sum of its parts, and it has novel characteristics and 
principles of interaction that further distinguish it from other BICAs. These characteristic and 
principles emerge from the details of TOSCA and thus will be presented in Section 5 after the 
complete architecture has been described. 
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3. Overall structure: The basic loop 
 
Our design starts with the human brain, which consists of evolutionarily recent forebrain circuit 
designs (telencephalic circuits) layered on top of preserved ancient (e.g., reptilian) circuits, with 
the new designs accounting for more than 90% of the volume of the human brain. There are four 
primary divisions of telencephalic forebrain (cortex, striatal complex, hippocampal formation, 
amygdala nuclei), and many subdivisions (e.g., anterior vs posterior cortex, distinct cortical layers, 
local circuits, striatal components, hippocampal fields CA1, CA3, dentate gyrus, subiculum, …), 
each with its own cell types and local circuit design layouts, thus presumably each conferring 
unique computational properties.  
 
There is (perhaps surprisingly) a single large-scale architecture that organizes all telencephalic 
components. For almost any given region of posterior cortex, there is a corresponding region of 
anterior cortex (e.g., the frontal eye fields, connected to posterior visual cortical areas), as well as 
corresponding regions of striatum, pallidum and thalamus, connected in register. These 
complementary cortical and subcortical regions are connected in a characteristic pattern: 
reciprocal connections between posterior and anterior cortex, converging anterior and posterior 
cortical projections to a related region of striatum, which in turn connects (via pallidum and 
thalamus) back to the same region of anterior cortex. This overall “systems circuit” is by far the 
largest coherent loop in the mammalian brain, and it is repeated for multiple regions of posterior 
cortex, with dedicated regions corresponding to individual sensory modalities, as well as non-
cortical telencephalic regions including components of hippocampus and amygdala, connected 
with dedicated regions of striatum and anterior cortex. 
 
We are faced with a difficult problem in describing the design of TOSCA. The operation of a 
specific component is important, but the interaction among components is equally (or even more) 
important. Moreover, we have interactions between groups and loops of components. Our 
approach is to initially focus on the basic loop of behavior from perception to action and describe 
the primary neural systems that participate in that loop. This will leave out some structures that 
play a less central role in the basic loop. In going through the loop we often give a cursory 
description of a component because our goal is to build up the big picture, emphasizing 
interactions.  
 
At the highest level, the initial version of the TOSCA architecture will attempt to tightly integrate 
the most important neural systems found in the brain. These neural systems are described in detail 
in Section 4, and are labeled below with their corresponding subsection. The descriptions in 
parentheses summarize the main computational functions we attribute to each system.  
 
4.1. Sensory systems (Low-level vision and audition)  
4.2. Specific thalamocortical (core) circuits (Clustering)  
4.3. Non-specific thalamocortical (matrix) circuits (Sequencing)  
4.4. Cortico-cortical circuits (Bottom-up associations, top-down control, and self-organizing 

maps) 
4.5. Cortico-hippocampal circuits (Episodic memory)  
4.6. Cortico-striatal circuits (Action selection)  
4.7. Dopamine reward circuits (Reinforcement learning)  
4.8. Cortico-amygdala circuit (Emotion, State-dependent storage & retrieval) 
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Figure 1 presents some of the major pathways among the structures involved in these neural 
systems. Many others that play a less central role in the basic operation of TOSCA are omitted. In 
contrast to many traditional cognitive architecture where functionality maps directly to 
architectural components, in TOSCA (and the brain), it is the circuits and loops through multiple 
neural structures from which functionality emerges. 
 

 
Figure 1: Major pathways within and between neural systems underlying TOSCA. 
 

This pattern of connections is consistent with the following processing loop:  
1. Posterior cortex potentially receives any of five types of input: sensory input (via 

thalamus), episodic memory (via hippocampal system), top-down control signals (from 
anterior cortex), emotion (amygdala), and bottom-up associations (from other parts of 
posterior cortex).  

2. Specific (core) thalamocortical loops cluster on patterns of activity, recognizing familiar 
input patterns.  

3. Non-specific (matrix) thalamocortical loops encode (& retrieve) sequences of clusters, 
producing a representation of what is expected to come next.  

4. Cortico-cortical connections within posterior cortex modify and elaborate the internal state, 
generating a more complete hierarchy of clusters of sequences of clusters that is organized 
topographically within cortical areas.  

5. Cortico-cortical projections to anterior cortex propose specific intentions, which could be 
motor actions or mental actions (e.g., setting cues for episodic memory retrieval, setting 
goals in working memory, maintaining or attending to specific information).  

6. Corticostriatal loops select among competing actions based on the (learned) values 
associated with each action in the current context/state. Multiple actions can be selected in 
parallel, based on the parallel structure of frontostriatal loops.  

7. State-action values are modified by the midbrain dopamine system in a way that realizes 
reinforcement learning algorithms (strengthening state-action associations that lead to 
long-term reward).  

8. Motor actions are passed on to the motor output systems for execution whereas mental 
actions provide top-down control signals to posterior cortex.  

DA 

Amygdala 
nuclei 

thalamus

Posterior Cortex Anterior Cortex 

Basal Ganglia 

sensory input motor output 

Hippocampal 
system 

Approved for Public Release, Distribution Unlimited



TOSCA Architecture Design 
***DRAFT*** 

 5/45 

4. Major brain subsystems  
 
This section describes the major brain subsystems that will be modeled by TOSCA. These are not 
isolated regions of the brain but are instead circuits involving multiple brain regions. For each of 
these subsystems we first present the underlying anatomical structures in the brain, with an 
accompanying figure that highlights those structures in Figure 1 that contribute to the circuit. This 
is followed by a description of the physiological operation of the structure. We then discuss the 
derived computational functionality – this is the core of what we will implement in software. This 
is followed by a description of how this subsystem interacts with the rest of the system.  
 
4.1 Sensory systems (low-level vision and audition) 
 

Anatomical structure 
The early visual system 
contains among the most 
intensively studied regions 
of the brain, including the 
retina, dorsal lateral 
geniculate nucleus of 
thalamus, and primary 
visual cortex (V1), as well 
as lateral occipital cortex 
(LOC). The early auditory system, also heavily studied, consists of the cochlea, auditory 
brainstem nuclei, medial geniculate nucleus of thalamus, and primary auditory cortex (A1).  
 
In both cases, the feed-back lines from cortex back to thalamus outnumber the feed-forward 
lines from thalamus to cortex by an order of magnitude, strongly suggesting the powerful 
role played by top-down cortical modulation of early structures, as described below.  
 
Physiological operation 
Although many issues remain to be understood in these systems, much agreement has been 
reached in the scientific literature about the nature of initial processing throughout these 
structures. Many independent laboratories have arrived at shared assumptions about the 
processing of these regions, which extract initial motion, edge, depth, and primitive shape 
information in visual areas, and edge contours, formants, and detailed frequency 
information in auditory areas. Importantly, as mentioned, these areas receive an order of 
magnitude more input back from cortex than they provide output to cortex. As might then 
be expected, these areas respond powerfully to extensive feedback signaling from cortex, 
enabling a range of attentional and gating operations. Rather than a view in which signals 
pass from the periphery into cortex, the system is instead a highly active perceiver, 
controlling and predicting inputs throughout the perceptual process and directing the paths 
by which inputs arrive. The extensive published literature on these mechanisms has been 
oft-replicated and documented, enabling past work to serve as a solid starting point for 
further downstream processing in TOSCA.  

 
An illustrative tale can be told in this regard. Initial work on cochlear front-end mechanisms 
yielded extensive data on the processing being carried out by cochlea and other early 
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structures. At one time there was an extensive program of study aimed at carefully 
replicating cochlear function in silicon devices, with the possible goal of treatments for the 
deaf. During this work, experiments were performed on deaf subjects with simple, low-
resolution frequency filters, bypassing the cochlea and plugged directly into the auditory 
nerve. To the considerable surprise of many scientists in the field, these experiments had the 
following result: initially, little intelligible sound got through to the subjects – but after a 
“practice” period averaging 2-3 weeks, the subjects “learned” to interpret the sounds; 
learned so well that many could understand spoken language over a telephone, a notoriously 
low-bandwidth and noisy conduit. It emerged that the downstream areas (e.g., auditory 
cortical regions) learned to interpret the inputs as though they were conveyed by normal 
biological apparatus, even though the inputs were measurably and substantially inferior to 
the signals that would have been sent by a real cochlea. These experimental findings 
strongly support the lesson that top-down cortical control can overcome even extensive loss 
of fidelity in front-end structures.   
 
Derived computational functionality 
As a result of the widespread agreement in the literature on early visual processing, work in 
TOSCA can take advantage of these shared findings and rely on widely agreed-upon 
standard “off the shelf” mathematics and software systems corresponding to front end 
processing (Gabor filters, edge detectors, motion detection). It is anticipated that little new 
work will be done on these feature extraction systems.  

 
In particular, one method in testing for Tosca is a difference of Gaussians (DoG) filter 
applied to multi-scale information channels (“pyramids”) to produce a salience function, 
followed by attention windows centered on the local maxima of the salience function.  In 
our case we model covert as well as overt attention, and thus can select multiple attention 
windows per frame, and we select the scales as well as locations of attention windows, as 
suggested by data showing that covert attention may create both translational and scale 
invariance.  We model feature extraction as a process of voting in parameter spaces that 
reflect color and non-accidental edge properties, thus corresponding to high-dimensional 
feature vectors describing each attention window.  Most importantly, Tosca includes top-
down salience channels that indicate how well an image matches scaled versions of 
predicted objects, as described in subsequent sections.  

 
As per the previous discussion, widespread consensus is accruing that most of the “heavy 
lifting” in both auditory and visual understanding is being carried out downstream, and via 
“top-down” modulatory control by cortical structures of early sensory areas. The TOSCA 
team brings extensive longstanding background expertise on the primacy of top-down 
processing in vision.  
 
Systems 
Early vision and auditory systems are strongly interconnected with downstream perceptual 
object, category, and location recognition structures, as described. It is also noteworthy that 
most visual and auditory areas project to multimodal areas, in which visual and auditory and 
even somatosensory information become intermingled. Thus these downstream higher 
perceptual and cognitive areas apparently must share functions common to different 
modalities. This principle is exploited throughout the TOSCA architecture.  
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4.2 Specific thalamocortical (core) loops (clustering) 
 

Anatomical structure  
Projections from cells in 
thalamic “core” nuclei 
synapse on target neurons 
in all cortical layers to 
some extent but 
predominantly in deep 
layer III and (in granular 
cortical regions) in layer 
IV, as well as on the 
apical dendrites of layer VI neurons. These afferents, which preserve topographic 
organization, are often described as the primary input to sensory neocortical regions, though 
quantitative neuroanatomical studies report that these thalamic inputs constitute a very small 
percentage of the total set of afferents to cortical layer IV cells: for instance, inputs from 
dorsal lateral geniculate nucleus (dLGN) neurons comprise less than 6% of the synaptic 
contacts onto layer IV target cells in primary visual cortex. Projections from a given thalamic 
core region extend to a cortical area roughly 0.5 – 1.0 mm wide, somewhat larger than the 
size of physiologically delineated functional columns. Layer VI axons project back 
topographically to the thalamic core cells from which they receive inputs, as well as to the 
overlying portion of the nucleus reticularis (NRt) covering the target core cells. NRt in turn 
generates GABAergic projections to these thalamic core cells. The result can be depicted by 
highlighting a subset of the connections that occur in thalamocortical circuits as in Figure 2.  

 
Figure 2: Thalamocortial Circuits 

 
 Physiological operation  

Here we describe the simplified steps that occur in response to normal inputs. Peripheral 
inputs activate thalamic core cells which in turn participate in topographic activation of 
middle cortical layers, e.g., ear → cochlea → auditory brainstem nuclei → ventral 
subdivision of medial geniculate (MGv), or corresponding thalamic core nucleus (“core” in 
the figure), → primary auditory cortex (A1), layer IV → layer II-III → layer VI → N.Ret → 
MGv (core).  
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In the event that a fixed input is being focused on, i.e., that a stream of inputs is not arriving, 
then this loop will recur. (In the next section, it will be seen that in response to a stream of 
inputs, other thalamocortical mechanisms become engaged, interrupting operation of the 
core loop and employing elements of both core and matrix loops). 
 
As the core loop recurs in response to fixed input stimuli, a series of physiological responses 
occurs. The superficial (layer II-III) cells that are most response to a given input will in turn 
activate neighboring inhibitory (red) cells, which then in turn inhibit all the excitatory cells 
in the region. Thus the response to an input is a relatively brief discharge from only the most 
responsive excitatory cells followed by silence induced by lateral inhibition. As the synaptic 
contacts onto the responding cells become strengthened via LTP, those cells become 
increasingly probable responders even to slightly different spatial input patterns. Thus those 
superficial cells that initially repond to a particular input pattern become increasingly 
responsive not only to that input but also to a range of similar inputs (those that share many 
active lines; i.e., small Hamming distances from each other), such that similar but 
distinguishable inputs will come to elicit identical patterns of layer II-III cell output, even 
though those inputs would have given rise to slightly different output patterns in the absence 
of LTP.  
 
These learning-based (LTP-based) effects can be simply characterized in terms of the formal 
statistical operation of clustering, in which sufficiently similar inputs are placed into a single 
category or cluster. This is further discussed in the next section, on functional implications.  
 
Immediately following this response from superficial layer neurons, those cells activate deep 
layers (V and VI; see figure). Output from layer VI initiates feedback activation of nucleus 
reticularis (N.Ret) (Liu and Jones 1999) which in turn inhibits the core thalamic nucleus. 
Since, as described above, topography is preserved through this sequence of projections, the 
portions of the core nucleus that become inhibited will correspond topographically to those 
portions of L.II-III that were active. On the next cycle of thalamocortical activity, the input 
(assumed as above to be a relatively fixed unchanging input) will arrive at the core nucleus 
against a background of inhibitory feedback from N.Ret, which has been shown to last for 
hundreds of milliseconds (Cox et al., 1997; Zhang et al., 1997). Thus the predominant 
component of the next input to cortex is only the uninhibited remainder of the input, 
whereupon the same operations as before are performed. Thus the second cortical response 
will consist of a quite distinct set of neurons from the initial response, since many of the 
input components giving rise to that initial response are now inhibited. This process of 
inhibition and distinct selected responses continues until the feedback inhibition at N.Ret 
diminishes (roughly 500 – 1000 msec).  
 
Derived computational functionality  
Analysis of the sequence of responses in computational models has shown clustering and 
successive sub-clustering of inputs. The first cycle of response identifies the input’s 
membership in a general category of similar objects (e.g., flowers); the next response (a 
fraction of a second later) identifies its membership in a particular subcluster (e.g., thin or fat 
flowers); then sub-sub-clusters, etc. Thus the system repetitively samples across time, 
differentially activating specific target neurons at successive time points, to discriminate 
among inputs (see, e.g., Kilborn 1996; Rodriguez et al., 2004). 
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Table 1: Simplified Thalamocortical Core Algorithm 
for input X 

for C ∈  win(X,W) 
W j ⇐  W j  + k(X – C)  

end_for 
X ⇐  X – mean(win(X,W))  
end_for 
where 

X = input activity pattern (vector); W = layer I synaptic weight matrix; 
C = responding superficial layer cells (col vector); k = learning rate parameter; 
win(X,W) = column vector in W most responsive to X before lateral inhibition [∀j, max(X · Wj) ] 

 
The method can be characterized as an algorithm (Table 1). Analysis reveals the algorithm’s 
time and space costs. The three time costs for processing of a given input X are: i) 
summation of inputs on dendrites; ii) computation of “winning” (responding) cells C; iii) 
synaptic weight modification. For n learned inputs of dimensionality N, in a serial processor, 
summation is performed in O(nN) time, computation of winners takes O(n) time, and weight 
modification is O(N log n). With appropriate parallel hardware, these three times reduce to 
O(log N), O(log n), and constant time respectively, i.e., better than linear time. Space costs 
are similarly calculated: given a weight matrix W, to achieve complete separability of n cues, 
the bottom of the constructed hierarchy will contain at least n units, as the leaves of a tree 
with log Bn hierarchical layers, where B is the average branching factor at each level. Thus 
the complete hierarchy will contain ~ n[B/(B-1)] units, i.e., requiring linear space to learn n 
cues (Rodriguez et al., 2004).  
 
These costs compare favorably with those in the (extensive) literature on such methods 
(Rodriguez et al., 2004). Elaboration of the algorithm has given rise to families of 
computational signal processing methods whose performance on complex signal 
classification tasks has consistently equaled or outperformed those of comparable methods 
(Coultrip and Granger, 1994; Kowtha et al., 1994; Granger et al., 1997; Benvenuto et al., 
2002; Rodriguez et al., 2004).  

 
Systems  
The thalamocortical core loop is part of the overall thalamocortical loop, which includes the 
matrix circuit, discussed in the following section. Taken together, thalamocortical loops are 
the primary circuit in the brain, engaged in every cortical region, and in turn participating in 
cortico-striatal and cortico-limbic (hippocampal and amygdala) circuits, each described later.  
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4.3 Non-specific thalamocortical (matrix) loops (sequencing)  
 
Anatomical structure 
Projections from cells in 
thalamic “matrix” nuclei 
predominantly connect in 
layer I, chiefly on the 
apical dendrites of neurons 
from layers II, III, and V. 
These projections have 
been referred to as 
“nonspecific,” in i.e., broad 
and diffuse in contrast to the more topographic projections from “core” nuclei in thalamus 
(Lorente de No 1938; Killackey and Ebner 1972, 1973; Herkenham 1986; Jones 1998). It 
has consistently been confirmed that matrix cells projecting to a given cortical area receive 
projections back from layer V of that cortical area without intervening NRt contacts 
(Conley and Diamond 1990; Rouiller et al 1991; Bourassa and Deschenes 1995; 1998). This 
portion of the thalamocortical circuit can be illustrated by highlighting a subset of the 
connections that occur in thalamocortical circuits as in Figure 3.  
 

 
 

Figure 3: Thalamocortial Matrix Circuit 
 
Physiological operation 
Unlike the core loop, the matrix circuit receives no inputs from peripheral signals. Only 
after cortex is activated by inputs via the core loop, is the matrix loop activated. In 
particular, once the superficial layer cells in cortex respond to an input, their output 
activates not just layer VI as described in 4.2 but also layer V, which sends diffuse (non-
topographic) feedback to matrix nucleus Mt, which in turn projects back up to layer I of 
cortex. Their non-topographic nature means that these projections do not retain any 
neighbor relations that may obtain among inputs.  
 
(This loop, like that of the core circuit, is timed via endogenous “clocks”: synchronous 
activity of wide regions of cortex (modulated in part by ascending systems affecting the 
periodic responsivity of inhibitory cells) makes the probability of excitatory cell spiking 
lower during peak inhibition and higher during inhibitory troughs. Moreover, the average 
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time course of excitatory and inhibitory potentials (15 msec and 50 msec, respectively), and 
the time constants of dendrites, severely limit the temporal precision with which a target 
neuron can “read” differences among slightly different spike trains (Magee 2000).) 
 
Cortical pyramidal cells preferentially respond to onsets and offsets, i.e., transitions among 
inputs in all cortical areas studied (somatosensory: Peterson et al. 1998; auditory: 
Recanzone et al. 2000; visual: Rols et al 2001; Bair et al 2002).  
 
The activation of layer V in rapid sequence via activation by superficial layers (in response 
to each element of a sequence) and via activation by Mt (corresponding to feedback from 
previous element in the sequence) selects responding cells sparsely from the most activated 
cells in the layer (Coultrip et al., 1992) and selects synapses on those cells sparsely as a 
function of the sequential pattern of arriving inputs. Thus synapses potentiated at a given 
step in layer V correspond to the input occurring at that time step together with 
orthogonalized feedback arising from input just prior to that time step (Aleksandrovsky et 
al. 1996; Rodriguez et al. 2004).  
 
Derived computational functionality 
The same steps as those described in section 4.2 obtain, but in response to time-varing 
inputs, a different effect is produced: that of “chaining” the elements in the input sequence 
via the “links” created due to layer V activity from coincident inputs corresponding to 
current and prior input elements. As in the operating rule described by Granger et al. (1994), 
the sparse synaptic potentiation enables the cells in layer V to act as a novelty detector, 
selectively responding to those strings that have previously been presented. Whereas 
superficial layer cells in the model respond to any of a number of sufficiently similar inputs 
(the “clustering” effect described earlier), the deep layer cells repond only to the input 
sequences that have actually occurred previously, due to the orthogonalizing input from Mt 
combining with superficial layer input. Thus the layer V activation patterns even for very 
similar input sequences will be very different from each other, or, put differently the 
probability of two similar input sequences eliciting similar sequences of layer V patterns is 
low.  

 
Table 2: Simplified Thalamocortical Matrix Algorithm 

 
for input sequence X(L) 

 for C ∈  TopographicSuperficialResponse(X(L)) 
 for V(s) ∈  C ∩ NNtResponse(X(L-1)) 

   Potentiate( V(s) ) 
  NNt(L) ⇐ NontopographicDeepResponse(V) 

end_for 
end_for 

end_for  
where L = length of input sequence;  
C = columnar modules activated at step X(L);  
V(s) = synaptic vector of responding layer V cell,  
NNt(L) = response of nonspecific thalamic nucleus to feedback from layer V. 
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As before, the method can be characterized as an algorithm (Table 2). Rodriguez et al. 
(2004) showed that the space costs grow linearly with the number of sequences stored, for 
an assumed fixed acceptable rate of collision errors.  
 
Systems 
The thalamocortical loops are part of the overall cortico-cortical and cortical-subcortical 
systems-level organization of the telencephalic model. The primary representations, 
hierarchically nested sequences of categories, are elaborated in various ways via these 
interactions. As will be seen in Section 5, these representations underlie content all the way 
from perception to language.  

 
4.4 Cortico-cortical circuits (bottom-up associations, top-down control, self-
organizing maps)  

 
Anatomical structure 
The proposed architecture 
of cortico-cortical circuits 
in TOSCA is based on a 
few general features of 
cortico-cortical circuits: (1) 
Distinct cortical areas 
based on cytoarchitectural 
differences, (2) massive, 
bidirectional connectivity 
within and between cortical areas including substantial bidirectional projections between 
frontal cortex and posterior cortex, and (3) topographic projections: nearby cells tend to 
project to nearby targets. TOSCA also incorporates assumptions about the micro-circuitry 
within cortical columns (interacting with thalamic nuclei) which play a critical role in the 
emergence of clustering and sequencing (see sections 4.2 and 4.3). 
 
Physiological function 
Distinct cortical areas perform quite different functions. At the highest-level, sensory 
information is processed in posterior neocortex (consisting of occipital, parietal, and 
temporal neocortex) while anterior cortex (frontal cortex) is primarily involved in 
processing actions and intentions. At a finer grain-size, there are on the order of 50-100 
distinct cortical areas (or more depending on how you divide it up) performing quite 
different functions. Many of these cortical areas are organized topographically with nearby 
cells exhibiting similar receptive fields. Cortical representations of multimodal 
stimuli/concepts involve a large population of active neurons distributed across multiple 
cortical areas. Processing across cortical areas is strongly interactive as the activity within a 
cortical area can be strongly influenced both by bottom-up influences (e.g., perceptual 
processing in sensory cortex) and top-down influences (e.g., attentional influences from 
anterior areas). 

 
Computational function 
At the most coarse level, the initial version of TOSCA will distinguish posterior cortex, 
which we assume represents the current state, from anterior cortex, which we assume 
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represents intentions (both motor and mental actions as well as goals). Projections from 
posterior cortex to anterior cortex will encode associations between specific features of the 
state and taking (or not taking) specific actions (or more generally, adopting a specific 
intention which may be an abstract goal that requires many actions to achieve). Conversely, 
projections from anterior cortex to posterior cortex will encode a mental operation by 
specifying how a given action should change the state. Simple examples include exciting 
part of the posterior state representation in order to maintain it (working memory), focusing 
attention on some particular feature of the state, activating or manipulating a mental image in 
sensory cortex, among many others. Of course, projections within posterior cortex are also 
capable of changing state. We assume these projections correspond to better learned, more 
automatic associations whereas frontal representations correspond to more controlled, 
deliberate intentions. 
 
As previously discussed, the central representation in TOSCA will be sequences of clusters 
(of sequences of clusters...). Clusters naturally arise from thalamocortical loops which 
perform a kind of competitive learning: neurons whose receptive field best matches the 
current input "win" and their receptive field is modified to be closer to that input. This is a 
standard approach in connectionist modeling and is known to lead to receptive fields that 
represent category prototypes. 
 
We adopt the additional assumption that learning affects the receptive fields of neurons that 
are spatially near the "winning" cells. This assumption is quite plausible under the 
assumption that nearby cells tend to cooperate (e.g., excite each other) rather than compete. 
This is the critical assumption underlying all self-organizing map (SOM) models and leads 
to the kind of topographically organized networks that are ubiquitous in cortex. What this 
means for TOSCA is that clusters that are represented nearby in cortex will tend to represent 
similar stimuli/concepts and will tend to project to nearby targets. Such topographic 
organization naturally supports similarity-based generalization under the assumption that 
cortical representations correspond to population codes rather than grandmother cells. To see 
this, consider what happens when an association is learned between one cluster 
corresponding to a feature of the state and another cluster corresponding to a potential action 
to take when that feature is present. Each representation corresponds to a large population of 
nearby cells with similar receptive fields (a population code). Learning the association 
between them corresponds to strengthening the connections between the two populations. 
Similar, but slightly different, features of the state will activate an overlapping population of 
cells as the original feature and, as a result, the new features will be partially associated with 
the same action. As a result, the architecture will be able to choose actions that are generally 
appropriate based on states it has never experienced, as long as those states are similar to 
states it has experienced. 

 
Systems 
The cortical system will interact with all the other major subsystems in TOSCA: thalamus 
(clustering and sequencing), hippocampal system (episodic memory), corticostriatal circuits 
(action selection), midbrain dopamine system (reinforcement learning), amygdala 
(reciprocal priming). These interactions are described in the other parts of section 4. 
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4.5 Cortico-hippocampal circuits (episodic memory, spatiotemporal relations) 
 

Anatomical structure  
As described below in 
more detail, our network 
model of cortico-
hippocampal circuits for 
learning and memory will 
include modules 
corresponding to the 
dentate gyrus (DG),  CA3 
and CA1 fields of the 
hippocampus proper, and superficial and deep entorhinal cortex.  
 
Entorhinal cortex. The entorhinal cortex contains six layers that, for simplicity, can be 
divided into “superficial” (layers I-III) and “deep” (layers V-VI) EC. The superficial layers 
receive highly-processed multimodal sensory input from neocortex (primarily via perirhinal 
and postrhinal cortex). Principal neurons in the superficial layers include pyramidal neurons 
(in layer III) and stellate cells (in layer II). The stellate cells project via the perforant path to 
DG and CA3, while the pyramidal cells project to CA1 (and subiculum). The superficial 
layers also contain a large number of GABAergic interneurons that exert a widespread 
inhibitory control over the output of principal cells. The deep layers receive input from CA1 
(and subiculum) and project back to the same neocortical areas that provided input to the 
superficial layers. There is also a projection from deep to superficial EC that causes both 
excitation and feedforward inhibition (van Haeften et al., 2003). Pyramidal cells in the deep 
layers show graded persistent firing (over 5 minutes) which could allow for reverberating 
circuits (superficial EC to hippocampus to deep EC to superficial EC) to maintain stimulus 
representations across short delays (Frank & Brown, 2003).  
 
Hippocampal Formation. The hippocampus includes a dentate gyrus (DG) layer, a CA3 
layer, and a CA1 layer. Connections from DG to CA3 and from EC to CA1 are topologically 
organized. Each stellate neuron in EC contacts a subset of the possible postsynaptic targets 
in DG and in CA3. Each neuron in CA3 contacts a subset of the possible postsynaptic targets 
in CA3 and CA1. 
 
Physiological function 
EC neurons receive external input representing highly pre-processed multimodal sensory 
information from cortex. They will be modulated by interneurons providing both feedback 
and feedforward inhibition; for simplicity. Strong inhibitory processes and local circuit 
feedback in the EC cause representational compression, implementing representational 
clustering function proposed by Myers et al. (1995). Deep EC neurons form the principal 
output of the hippocampal region back to cortex and also project to principal cells in 
superficial EC. 
 
Computational function 
In our implementation of TOSCA, we will follow the widely accepted hypothesis that the 
hippocampal region plays a critical role in the acquisition of new memories, particularly 
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rapidly-acquired memories for autobiographical events, sometimes collectively called 
episodic memory (e.g. Squire, 1987; Squire et al., 2004). As a starting point we plan to 
incorporate our previous neural network modeling of hippocampal region processing in the 
larger architecture (Gluck & Myers, 1993, 2001; Myers & Gluck, 1994). This model 
assumes that the hippocampal region develops new stimulus representations that encode 
contextual and stimulus-stimulus regularities. Specifically, we found that known features of 
the anatomy and physiology of EC (sparse activation of principal neurons, dense inhibition, 
and local plasticity mechanisms) give rise to the compression of redundant features in the 
input. This model accounted for data showing that latent inhibition and sensory 
preconditioning, which depend on compressing together the representations of CS and 
context and/or co-occurring cues, survive selective hippocampal lesion but are impaired after 
EC or broad hippocampal-region damage (Myers et al., 1995). We will adopt this same 
model in the initial version of TOSCA. We will also follow our previous modeling in 
assuming that the hippocampal layer forms a compact code for the whole situation in which 
the organism finds itself (what we call the ‘ensemble’'; Murnane, Phelps, & Malmberg, 
1999). Such representations will form the basis of episodic memory in TOSCA. 

Systems 
Interactions between the hippocampal system and other neural systems will play a crucial 
functional role in TOSCA. At the highest level, the hippocampal system will constantly be 
encoding and storing compressed representations of the current state (as represented in 
posterior cortex). When similar states are encountered in the future, they will activate the 
previously stored compressed representation which will in turn reinstantiate information 
from the previously stored state in posterior cortex. Once this information is represented in 
posterior cortex, it can influence which actions/intentions are proposed and selected. 
Furthermore, we envision corticohippocampal loops in TOSCA storing and retrieving 
temporal sequences of events that have been experienced. Specifically, each event in a 
sequence could provide cues that lead to retrieval of the next event in the sequence. In this 
way, the hippocampal system could be used to replay a sequence of events from the past. 
Doing so could be potentially very valuable to the agent, because it would make it possible 
to plan ahead and predict likely future events that may improve its present decision making. 

The interaction between the hippocampal system and anterior cortex could provide another 
crucial functionality for TOSCA. Recall that one critical assumption of the architecture is 
that it learns how and when to perform mental operations as well as motor actions. That is, 
the same learning algorithms will be used to reinforce rewarding actions, whether they are 
mental actions or motor actions. The initial design of TOSCA will exploit this strategy in 
order to learn how best to exploit its episodic memory system. For example, TOSCA should 
be able to learn when the mental act of attempting an episodic memory retrieval is likely to 
lead to long-term reward. Similarly, it should learn when episodic storage is called for. 
Indeed, the agent should even be able to learn what retrieval cues to set in posterior cortex in 
order to retrieve memories that are likely to help in deciding how to act. Put simply, TOSCA 
should be able to learn how to use its episodic memory most effectively in addition to 
learning episodic memories themselves.  
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4.6 Cortico-striatal circuits (action selection) 

 
Anatomical structure 
The basal ganglia (BG) 
are a set of 
interconnected, sub-
cortical nuclei which form 
a complex network of 
loops integrating cortical, 
thalamic and brainstem 
information (Alexander et 
al 1986). There are three 
main pathways from the cortex, through the BG , and back to the cortex (Figure 3).  
 
The striatum is the input nucleus of the direct pathway. It projects directly to the output 
nuclei of the BG, the Globus pallidus interna (GPi) and Substantia nigra pars reticulata 
(SNr). The output nuclei project back to the cortex via the thalamus, with the input returning 
to the same cortical module that provided the excitation to the striatum.  
 
The striatum also has a second pathway to the output nuclei, the indirect pathway. This two 
step inhibitory pathway provides delayed excitation to the same area of the output nuclei that 
the striatum inhibited via the direct pathway.  
 

 
 

Figure 3: Schematic of corticostriatal pathways 
 
Figure 3 Schematic of corticostriatal pathways illustrating a single corticostriatothalamic 
loop. The main pathway is the direct pathway. Competing intentions in the cortical module 
are selected amongst in the striatum. The selected intention is passed to the output nuclei, the 
Globus pallidus interna (GPi) and Substantia nigra pars reticulata (SNr) and thence back to 
the area of cortex it originated from. The hyperdirect pathway provides a fast excitatory 
pathway from the cortex via the subthalamic nucleus (STN) to the output of the basal ganglia 

thalamus 
Amygdala

nuclei

Posterior Cortex Anterior Cortex 

Basal Ganglia

sensory input motor output 

Hippocampal
system

DA

Approved for Public Release, Distribution Unlimited



TOSCA Architecture Design 
***DRAFT*** 

 17/45 

to focus the action selection. The indirect pathway provides a slower excitation to the output 
of the basal ganglia from the striatum via the Globus pallidus externa (GPe). This two step 
inhibitory pathway leads to excitation in the GPi and acts to terminate the selection of the 
intention.  
 
The hyperdirect pathway provides a route for cortical excitation to be passed to the output 
nuclei of the BG.  
 
Physiological operation 
The cortical module proposes a number of contesting intentions. These are held in check by 
the tonic inhibitory output of the GPi/SNr acting via the thalamus. The striatum acts to 
decide amongst the competing intentions using information from past rewards obtained in 
similar environmental contexts (see section 4.7).  
 
The three pathways provide mechanisms for intention selection, control of the force of the 
release of the intention and duration of release of the intention.  
 
Derived computational functionality  
We assume that a central function of corticostriatal circuits is action selection (or more 
accurately, intention selection). Specifically, the corticostriatal circuits in TOSCA will act as 
a winner-take-all network to mediate between mutually exclusive intentions. The main 
computation is performed at the level of the striatum where the intrinsic membrane 
properties of the principal neurons provide the capability to differentiate between the 
expected reward from each of the competing intentions. 
 
Systems  
As previously discussed, projections from posterior to anterior cortex can naturally encode 
associations between actions/intentions and features of the state that suggest that action. 
Multiple different, and potentially, conflicting intentions can be activated in parallel and it 
will often be necessary to select among conflicting actions. The neuroanatomy of 
corticostriatal circuits make them particularly well-suited to this function and interactions 
between cortex and basal ganglia will be crucial in doing so. 
 
Interactions between this system and the dopamine system will also be crucial for learning in 
TOSCA. Specifically, when an action leads to unexpected reward, the value of that action in 
the current state/context will be increased (see section 4.7) by potentiating the cortical 
associations between the state features and the action representation. The corticostriatal 
action-selection system will be sensitive to these values, so that when that action is proposed 
in similar states in the future, its probability of being selected will be higher. 
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4.7 Dopamine reward circuits (reinforcement learning)  
 
4.7.1 How the dopamine system modulates action contingencies 

 
Anatomical structure 
Dopamine producing 
neurons are located in two 
midbrain nuclei, the 
ventral tegmental area 
(VTA) and the substantia 
nigra pars compacta 
(SNc) (Figure 4). They 
receive excitatory input 
primarily from the 
pedunculopontine tegmental nucleus (PPTN) and prefrontal cortex and inhibitory input from 
the ventral striatum.  
 
They project to the prefrontal cortex and striatum where they fire in a phasic fashion to 
release dopamine in response to rewarding situations (Romo & Schultz 1990, Schultz 1996).  

VTA/SNc Lateral hypothalamusPedunculopontine tegmental nucleus

Prefrontal cortex Ventral striatum
Excitatory connection
Inhibitory connection
Dopamine connection

Dorsal striatum

 
Figure 4: Schematic of corticostriatal pathways 

 
Figure 4 Simplified schematic of the connections of the dopamine system. The nuclei 
containing the dopamine neurons, the ventral tegmental area (VTA) and the substantia nigra 
pars compacta (SNc) receive information about primary reward from the lateral 
hypothalamus via the pedunculopontine tegmental nucleus (PPTN). Neuromodulatory 
projections from the VTA/SNc are integral to learning from reward in the prefrontal cortex 
and striatum. The VTA also receive an excitatory input from prefrontal cortex and an 
inhibitory input from the ventral striatum.  
 
Physiological operation 
An unexpected (primary) reward elicits a phasic response in the dopaminergic neurons of the 
VTA/SNc. When a conditioned stimulus (CS) has been learned to reliably predict an 
upcoming reward, the time of response of the dopamine neurons shifts to coincide with the 
CS. These phasic releases of dopamine are utilized in the recipient structure to direct 
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learning so that intentions that are more likely to lead to reward are selected when the same 
environmental context is encountered in the future.  
 
Derived computational functionality  
Dopamine neurons have long been associated with reward learning and rewarded behavior, 
partly because of clear evidence of their key role in drugs of addiction (DiChiara, 1999), and 
because they are among the best targets for self-stimulation. The observation that the 
activity of dopamine cells in the monkey midbrain in reward-learning tasks closely follows 
the form of a key training signal in reinforcement learning (the temporal difference 
prediction error), is an important backdrop for TOSCA. In particular, temporal difference 
based RL methods will serve to modulate state-action associations by potentiating 
associations between clusters in posterior cortex (representing complex internal state 
information) and clusters in anterior cortex (representing internal and external action 
intentions).  

4.7.2 Intrinsic Reward and its Neural Basis 
 
Recent studies (Kakade & Dayan 2002, Dayan & Balleine 2002) have focused on the idea 
that dopamine not only plays a critical role in the extrinsic motivational control of behaviors 
aimed at harvesting explicit rewards, but also in the intrinsic motivational control of 
behaviors associated with novelty and exploration. For instance, salient, novel sensory 
stimuli inspire the same sort of phasic activity of dopamine cells as novel rewards (Schultz 
1998, Horvitz etal. 1997}. However, this activation extinguishes more or less quickly as the 
stimuli become familiar. This may underlie the fact that novelty itself has rewarding 
characteristics (Montague etal.1996). 

The novelty-based release of dopamine onto one of its major targets, the striatum, causes 
both general psychomotor activation (Hooks & Kalivas 1994) and also specific exploratory 
or seeking behaviors such as approach that cause animals to engage with those novel stimuli. 
Approach of this sort is a Pavlovian response---it is like a pre-wired action inspired by 
novelty (and also reward prediction). Theoretical treatments (Kakade & Dayan 2001, Kakade 
& Dayan 2002) have directly related the dopamine activity with mechanisms for controlling 
exploration in the RL literature such as exploration and shaping bonuses (Sutton, 1993, 
Dayan & Sejnowski 1996, Ng etal. 1999) effectively completing the circle of interaction 
between computational, psychological and neural approaches. In TOSCA, we will explore a 
wider set of mechanisms by which animals control and benefit from exploration, using it to 
build sophisticated mechanisms for manipulating and exploiting novel environments. This 
wider set of mechanisms include the desire for mastery over one's environment and often 
leads to purposeful and sustained experimentation, as well as the motivation of an agent in a 
social setting to be liked by other agents (like-me) which leads to imitative behavior in social 
settings.  

Various studies have also considered the neural basis of the assessment of novelty. Of 
particular relevance are two further neuromodulators, acetylcholine (ACh) and 
norepinephrine (NE), which are known to be involved in uncertainty and unexpectedness, 
and also to interact with the dopamine system. Theoretical treatments of these (Dayan &Yu 
2003,Yu & Dayan 2002 focus on their roles in reporting specific sorts of uncertainty---
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uncertainty arising from ignorance (which is what should drive exploration) and uncertainty 
arising from environmental stochasticity (which should not). The difference between these 
forms of uncertainty is relative to models of the environment, which form a key component 
of any theory of novelty. The ideas on ACh and NE are in their infancy; there is scope for a 
productive interaction between our explorations via TOSCA and future experiments  and 
theory on the drives and effects of NE and ACh. 

Derived computational functionality  
The intrinsic motivations listed above will serve as mechanisms for providing internal 
reward to the agent and this in turn will help direct the agent’s behavior during exploration 
and play both in the presence and absence of externally specified tasks. These internal 
rewards will lead to the learning of useful mental and physical skills in the form of options 
or abstract actions that in turn will become available to the reinforcement learning system in 
TOSCA as actions. This will allow an incremental buildup of a hierarchy of useful cognitive 
and physical skills by the agent that would not be possible in the absence of intrinsic 
motivations.  
 
Systems  
The dopamine system is tightly bound to the corticostriatal system, mediating learning in the 
prefrontal cortex and both divisions of the striatum. This system is also now known to 
provide neuromodulatory input to the hippocampal and thalamic systems.  
 

4.8 Cortico-amygdala circuits (emotion, state-dependent storage & retrieval) 
 

Anatomical structure 
The amygdala formation 
is composed of multiple 
subparts typically 
grouped into the Medial 
group, the Central group, 
and the Basolateral group. 
The latter, forming the 
baso-lateral amygdala 
(BLA) is an 
evolutionarily recent structure in contrast to the central and medial amygdala which are 
phylogenetically ancient. Central and medial amygdala nuclei are strongly connected to 
brainstem and hypothalamic structures and are implicated in visceral and hormonal 
modulation. See Figure 5 (left).  
 

DA 

Amygdala
nuclei

thalamus 

Posterior Cortex Anterior Cortex 

Basal Ganglia 

sensory input motor output 

Hippocampal
system

Approved for Public Release, Distribution Unlimited



TOSCA Architecture Design 
***DRAFT*** 

 21/45 

 
Figure 5: Amygdala nuclei (left) and interconnections with other structures (right) 

 
The BLA is highly connected with portions of cortex including medial and lateral prefrontal 
cortex, sensory association cortex, as well as ventromedial frontal, rostral insular and rostral 
temporal cortical areas, and the medial thalamus and ventromedial basal ganglia. (See Figure 
5 (right)). Connections from amygdala to cortex have recently been confirmed to preserve 
topographic organization (Amaral et al., 2003; Alheid 2003; Price 2003).  
 
Physiological operation 
Basolateral amygdala’s topographic connectivity with anterior cortical regions is capable of 
“priming” or activating at a subthreshold level regions in anterior cingulate cortex, prefrontal 
cortex, and orbitofrontal cortex among others. Reciprocal activation is in evidence; i.e., 
amygdala and cortex activate each other (constrained by their topographic projection 
patterns).  
 
Derived computational functionality  
Analyses currently in progress suggest computational utility of cortico-amygdala circuitry; 
these include the reciprocal physiological priming effect described above, learning in both 
cortex and amygdala, and interaction between amygdala and hypothalamus. This work is 
currently being written up for publication (Hearn and Granger, in prep) and it is anticipated 
that the corresponding analyses will be included in the TOSCA architecture.  
 
Systems  
Cortico-amygdala circuits are integrated with cortico-striatal circuitry; these circuits have 
effects on behavior from sensory recognition to motor function, as well as on episodic 
memory storage and retrieval.  

  
5. Key emergent functional properties: Representation & Control 
 
The previous section lays out our vision for TOSCA at the level of brain systems and circuits. It 
explores the physiology we are trying to capture in TOSCA as well as the low-level computation 
being performed in individual brain systems and in brain circuits. However, it is down at a level 
where it is often difficult to see how human-level behavior emerges from these components and 
their connections.  
 
Two primary features of the design of TOSCA are its representational system and its control 
system. The next two sections present initial overall views of how the underlying mechanisms 
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presented in section 4 operate together to generate an overall control mechanism to engage its 
environment, and to learn rich representations about that environment. Learning permeates the 
operation of the TOSCA system: the system is continually learning and cannot help but learn, and 
thereby builds up representations from combinations of perception and prior knowledge, as well as 
building up control knowledge.  

 
 

Figure 6: Depiction of functional organization of TOSCA 
 
Figure 6 depicts how the neural systems described throughout section 4 are functionally organized 
to produce useful behavior. The circled numbers correspond to subsections in subsection 4 where 
the underlying circuits that support the functionality are described. As can be seen in the bottom of 
the figure in the expanded diagrams, a given functional module in the figure (such as sequencing: 
4.3, or intrinsic reward: 4.7) are realized by circuits that involve multiple brain systems. 
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The figure is organized on the left with the major contributors to the active internal state, which 
itself is organized vertically in the middle of the figure. Perception from various modalities 
(vision, auditory and touch are shown) provide low-level input [4.1]. Clustering [4.2] and 
sequencing [4.3] work from low-level perception, as well as other available internal state 
structures, to create more abstract structures that in turn become available for further clustering 
and sequencing as well as input for control (on the right side of the diagram) [4.6, 4.7]. The 
control system [4.6] consists of many parallel loops that work across both external actions (the 
motor system) and internal “mental” operations, including goal selection, persistence of working 
memory and goal structures, internal simulation, selective attention, and retrieval from episodic 
memory [4.5]. The reward system sends signals to the action selection modules (4.6) to tune 
performance through reinforcement learning.  
 
5.1 Representation and memories: Multi-modal sequences of clusters and self-
organizing maps 
 
General properties of memories  
The deceptively simple operators of sequences and categories, and the resulting data structures 
(hierarchically nested sequences of categories), interacting with special-purpose structures such as 
hippocampal, amygdala, and striatal formations give rise to the complete set of internal 
“knowledge representations” that occur in the TOSCA architecture. This surprising finding is in a 
way at the core of the TOSCA effort: it is a discovery of how advanced complex behaviors can be 
constructed from apparently simple interacting components.  
 
Of particular importance is the emergence of interactions in what can be termed the primary 
architectural loop in TOSCA: the cortico-striatal loop. This set of circuits accounts for the vast 
majority of all the “real estate” in the entire system. Its behavior can be succinctly summarized 
thus: the representations generated by cortico-cortical systems can function as internal 
representations or models of states, which in turn can be tested and adaptively modified via 
reinforcement learning in cortico-striatal loop interactions. The resulting “adaptive exploitation” 
enables the construction of large and elaborate internal representations, and fits between those 
representations and the environment, via these basic powerful brain circuit mechanisms.  
 
A note on learning via long-term potentiation (LTP) 
In TOSCA, memories are stored via synaptic LTP, which operates via a set of well-worked out 
and extensively published and replicated rules and mechanisms. Many of these are unfamiliar to 
the field of psychology, and yield unusual memory effects in the architecture, all consistent with 
observed psychological phenomena.  
  
Temporary memory:  

Initial storage makes initial changes to synaptic weights. (Initial memory)  
  
Consolidation:  

If no new signals address those same synapses (storage sites) within the next 15-30 minutes 
(the synaptic consolidation period), those changes become permanent, i.e., irreversible. 
(Permanent memory).  
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Reversal:  
If interfering signals do arrive at these storage sites within the synaptic consolidation period, 
the weight changes can be reversed. This can result in entirely forgetting or just “shaping” / 
altering the stored memory.  

  
Elaboration:  

Once stored, the memories can be internally accessed (via cortico-hippocampal loops) and 
give rise to internal practice and elaboration. In particular, new memories can be created to 
elaborate the initial memories, linking the initial memories to additional related memory 
items (e.g., seeing one car can become related to having driven in either that car or another 
car, etc), both enriching and altering the memories. This occurs via new synaptic recruitment 
and storage at new additional sites.  
 

Thus all memories in the proposed architecture begin as temporary memories and can either 
become permanent (and possibly elaborated) or reversed (erased). Memories are stored where they 
are sensed or acted. There are no separate “locations” for memories of different durations.  
 
Emergence of (multi-modal) categories = internal grammars 
Two features of brain circuits past the sensory periphery are notable:  
i) circuits for different modalities (e.g., vision, audition) are remarkably similar (though not 

always identical; some of the gradient differences will be discussed separately); and  
ii) the majority of circuits receive inputs from multiple modalities. Thus communication among 

cortical regions consists of a single, shared, cross-modal internal representation language, 
regardless of the particular information being conveyed.  

  
Individual cortical regions compute clusters (i.e., similarity-based categories) and sequences 
(chaining), via different components of their intrinsic circuitry. These two components, interact to 
produce sequences of categories (see Rodriguez et al. 2004). The output of one thalamocortical 
circuit is input to others with identical or near-identical structure; these thus produce sequences of 
categories of sequences of categories …, effectively nesting the product of one “level” of 
processing into downstream processing products.  
  
Successive nesting creates increasingly deep hierarchical “trees” of sequences of clusters. 
(Feedback from downstream to upstream regions participates actively in this process; partial 
activation of a downstream region has the consequence of increasing the probability of response of 
its potential upstream input constituents, acting in effect like “expectations” that those inputs will 
occur.)  
  
These cortical mechanisms interact with hippocampal time dilation and contraction, amygdala 
“toggling” of salient features, and striatal reinforcement learning in cases of relevant feedback. 
Together the system produces incrementally constructed and selectively reinforced hierarchical 
representations consisting of nested sequences of categories (Granger 2006).  
  
Figure 7 is an abstract illustration of successive stages of a representation so constructed. Initial 
simple input features (e.g., visual spots or edges; auditory frequencies or formants) transduced by 
front end mechanisms are learned by earliest, specialized stages (denoted in the figure by single 
letters A, B, etc). Their encoded outputs are input to downstream structures which learn clusters 
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(categories of similar inputs) and sequences of clusters; further downstream regions learn 
sequences of clusters of sequences of clusters, and so on.  
  
Each downstream region, depending on its pattern of connectivity with its inputs, may exhibit a 
“bias”, preferring inputs with particular characteristics; these are genetically programmed and little 
is yet known of their layout, though work in quantitative neuro-anatomy is advancing knowledge 
in this realm. In TOSCA we will assume the existence of such biases, which cause different 
cortical regions to become increasingly “specialized” via learning for the particular feature 
combinations that they are most likely to successfully “compete” via lateral inhibition.  
  
In practice, it would be prohibitively expensive computationally to learn all such combinations of 
features, but combinatorial explosion is avoided by two primary mechanisms:  
  
i) Bias: Of all the possible combinations of features that could occur, only some actually do, and, 

as just mentioned, some combinations are preferred over others;  
ii) Competition: With learning, oft-traversed regions become increasingly strengthened and, via 

lateral inhibition of neighboring regions, become what may be thought of as “specialists” in 
certain types of inputs, competing to respond.  

 
Due to the described architectural arrangement, early upstream areas tend to respond to generic 
features and simple feature assemblies, but downstream regions respond with increasing 
selectivity to only specific assemblies, typically those that occur as patterns within oft-seen 
stimuli.  
  
As a concomitant, further downstream regions should be expected to selectively respond to larger 
or longer patterns, both in visual and auditory domains. As most visual inputs consist simply of 
different arrangements of the same sets of primitive input features, it is expected that patterns of 
brain activation should be extremely similar in response to many different visual inputs, but that 
the similarity of those brain activation patterns ought to correspond to the similarity of their 
inputs, that is, activation patterns ought to be more similar for similar inputs, and more different 
for different inputs.  
  
Moreover, if cortical regions are competing to respond to a given input, they should exhibit 
“category boundaries,” that is, the responses to images within a category (e.g., faces versus 
houses) should be more similar to each other than the images themselves are. Put differently, even 
highly different faces are likely to generate very similar cortical response patterns, whereas the 
similarity between any face and any house (as long as it is not a house that looks like a face!) 
should be more different than any two faces or any two houses.  
  
These three sets of predictions from the model (distributed representations, similarity of patterns, 
and category boundaries) turn out to be controversial: depending on the analysis methods, 
neuroimaging studies have been used to support a number of still-conflicting hypotheses. 
TOSCA’s architectural design, as described, is concordant with some of the most prominent 
findings, in which distributed, overlapping patterns occur in response to images of, say, faces vs 
houses; more similar inputs tend to generate more similar responses; and responses to images 
within perceptual categories are more similar than responses to images across categories (Haxby et 
al. 2001; Pietrini et al. 2004; Furey et al. 2006; Hanson et al. 2004).  
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The representations thus far described bear some resemblance to long-term semantic memory: 
they are  

- permanently stored,  
- contain (learned) relations among components,  
- tend to refer to categories and abstracts rather than individuals, and  
- lend themselves to representations of generic types, e.g., “letters,” “speech sounds,” “jeeps.”  

 
Characteristics of grammars (sequences of categories) 

 
 

Figure 7: Illustration of hierarchies constructed by telencephalic architecture. 
Initial features generate successively nested sequences of categories of features 
(left). Additional exposure eventually (right) selectively strengthens sequences 
that recur (e.g., AB), weakens those that do not (e.g., CDEF), and constructs new 
sequences of categories as they occur and recur (e.g., DEF followed by a category 
that may include any of A-F (denoted here by a *) followed by AB). 

 
The emergent data structure of the telencephalic system, statistically learned nested sequences of 
categories (as illustrated in Figure 7) is a superset of the structures that constitute formal 
grammars. The nested sequences of clusters are equivalent to ordered sequences of “proto-
grammatical” elements such that each element represents either a category (in this case a cluster) 
or expands to another such element (nesting), just as grammatical rewrite rules establish new 
relations among grammatical elements. 
 
Learning of the model’s representations as thus far defined (nested sequences of categories) 
constructs one type of semantic network referring to categories of objects, including relations 
among their internal parts (e.g., the hood, windows and trunk of a car).  
  
Still to be specified are representations of a kind often occurring in such specifications – e.g., 
abstractions of relations (“in front of,” “above,” “containing”). These arise in a way compatible 
with hypotheses of “simulations” (Barsalou et al., 1999), i.e., learning specific instances in which 
objects are in the relation (a plate above a table, a hand above a paper, a window above a desk) 
generates not just representations of and among the particulars, but also abstract hierarchical 
representations of the relations themselves, which in turn become applicable to new inputs (a 
plane above a mountain) not previously seen.  
 
The system extracts feature subsets as it learns, and generates regional cortical “specialists” as 
described earlier. Physical arrangements of objects in which one is higher in the visual field than 
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the other, for instance, lead to (relatively early) specialists that characterize the relationship 
between them. This relationship comes to have the verbal associations “above” and “below” 
(among others), and these relations come to internally define the corresponding abstract relations. 
This is also an area of still-active study in the architecture.  
 
Emergence of high-level cognitive representations 
The incremental nature of the “nested sequences of categories” data structure enables it to grow 
in function, simply by adding new copies of telencephalic thalamo-cortico-striatal-limbic loops – 
this functional growth corresponds to the incremental addition of “rules” acquired by the 
grammar. As more telencephalic “real estate” is added, the data structures that are constructed 
correspond to both longer and more abstract sequences, due to iterative nesting. Even regions of 
telencephalon with identical (or nearly identical) computational function nonetheless receive 
inputs from different sources, thus changing the feature combinations on which they operate (but 
see Galuske et al. 2000; Preuss 1995; 2000).  
 
Proceeding “downstream” through the architecture, the outputs of one area are input to the next 
area. Successively more complex data structures should emerge, capturing increasingly complex 
representational concepts. Thus differential branching pathways through the architecture come to 
“specialize” in different functional realms.  
 
Topics of ongoing study in the architecture concern the emergence of representational abstractions 
much-studied in psychology and in artificial intelligence, such as type-token distinctions (e.g., 
between “car” and “this car”), which enable distinguishing between individuals and categories. 
Initial study indicates that cortico-hippocampal interaction plays a role in this process, enabling 
the generation of different specifiers, qualifying cortico-cortical representations.  
 
As mentioned, of the large set of all possible assemblies of features, only a small subset seem to 
be readily learned by biological organisms; there apparently exist species-specific biases that 
shape animals’ (including humans’) interpretations of various inputs. For instance, in response to 
very little data, humans will interpret certain coherent point-source motions as biological motion 
(e.g., when lights are affixed to the limbs of people moving in an otherwise dark environment); 
will interpret many distorted inputs as face-like; will interpret many sounds as speech-like, and so 
on. It is assumed that these biases may arise from developmental pre-selection (via mechanisms 
to be discussed elsewhere) of some cortico-cortical pathways that will selectively respond to 
particular types of feature assemblies.  
 
It should be emphasized that all of these growing representational traits are hypothesized to arise 
directly from the hierarchical sequences of categories representations as manipulated by cortico-
striatal loops. From low-level sensory beginnings, the abstractions grow to encompass the 
apparently full range of high-level cognitive concepts. This will be a central topic of study in the 
architecture.  
 
Emergence of language 
It has already been seen that the primary internal representation, hierarchically nested sequences of 
categories, is a form of grammar, i.e., shares the characteristics of formal grammar systems, 
though as described it has been used thus far for representations of sensory and motor sequences, 
not typically associated with grammars. In the TOSCA architecture, then, all internal 
representations are couched in the formalism of grammars (of this specific type).  
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If this representational hierarchy grows large enough (a function solely of the space of cortico-
cortical structure allocated), the resulting abstractions become symbolic descriptors. At this point, 
the already grammar-based representation becomes the internal basis for linguistic representation. 
In other words, in the TOSCA architecture, grammars do not arise abruptly in service of linguistic 
abilities – rather, grammars are present throughout, and language arises as the representational 
hierarchy grows sufficiently large.  
 
As described earlier, far-downstream areas are assumed to come to identify increasingly abstract 
symbolic descriptors (see Tables 2, 3) that are statistically repeated in relevant situations. These 
include definitions of words as well as the abstract relations that underlie the words’ meanings.  
 
Figure 8 illustrates structures occurring in response to simple sentences (“John hit Sam”) as input. 
Construction of sequences (e.g., S11, “John” followed by “hit”), and categories (e.g., C21, “hit” 
and “kissed,” items that can follow “John”) are combined in successive downstream regions (n+1, 
n+2, etc.) to create “proto-grammatical fragments” corresponding to internal representations of 
linguistic structure information.  
 

 
 

Figure 8:  Nested sequences of clusters as sample proto-grammatical fragments 
educed from input strings.  

 
It is worth noting that the generated structures can be used both a) in the processing of subsequent 
novel inputs and b) in the generation of arbitrary new strings that will conform to the rules 
inherent in the learned internal representational structures.  
 
The resulting “generative” nature of the representations is worth emphasizing, addressing a crucial 
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aspect of linguistic grammars that can otherwise be absent from some purely input-processing or 
parsing mechanisms. A potentially infinite set of strings can be generated from the internal 
sequences of clusters, and the strings will be consistent with the internal grammar (see, e.g., 
Pinker 1999; Hauser et al. 2002; Fitch & Hauser 2004; Pinker & Jackendoff 2005).  
 
It is also noteworthy that the grammar does not take the form typically adopted in attempts to 
formally characterize the syntactic structure of natural languages (such as English). The 
protogrammatical fragments capture regularities that are empirically seen to suffice for both 
parsing and generation, and have the structure to account for rule-like behaviors that characterize 
linguistic behavior. Research is currently in progress to study the formal relations between typical 
linguistic grammars, and protogrammatical fragments that are emergent from nested sequences of 
clusters. 
 
(An additional characteristic of language that challenges researchers is the seeming effortlessness 
with which children learn language – readily contrasted even with the comparatively laborious 
training typically required for adults learning a second language. It is hypothesized that an innate 
bias related to sequences of categories of vocal utterances (speech) may lead (in larger-brained 
organisms) to a downstream bias for certain sequences of categories of assemblies of speech 
sounds (words). This may at least in part account for this much-studied but still elusive nature of 
innate language capacity; see Granger 2006).  
 
 
5.2 Control: External motor resources and internal cognitive resources  
In the previous section we described the emergent nature of representation in TOSCA—how both 
the present and the past come to be represented as multi-modal sequences of clusters at multiple 
levels of abstraction. In this section we describe how TOSCA exploits those representations to 
achieve adaptive, moment-by-moment control of both external motor effectors and internal 
cognitive states. The TOSCA theory of control is based on parallel loops of action selection 
contingent upon the representations described above and continuously modified by the intrinsic 
reward system. In the remainder of this section we first describe this general theory of control, 
followed by discussion of some of the specific control loops devoted to motor control and 
cognitive control. 
 
5.2.1 General properties of control 
 
TOSCA's general theory of control is based on three fundamental principles that have 
considerable biological and functional motivation:  (1) fine-grained, parallel selection loops for 
both external and internal actions; (2) action selection potentially contingent upon multiple 
aspects of the internally represented state; (3) reinforcement learning of control realized by a rich 
intrinsic reward system. We now briefly summarize each of these in turn: 
 

• Fine-grained, parallel selection loops for both external and internal actions. As we 
described above (Section 4.6) we assume that action selection is mediated by cortico-
striatal loops, and more specifically, that multiple regions of frontal cortex represent 
competing intentions for action. There is growing neuroanatomical evidence that these 
loops are quite segregated [cite], so that the frontal-striatal system is best understood as 
consisting of many fine-grained selection loops operating in parallel. Functionally, this 
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organization is well-suited to support the real-time control of a motor system with many 
degrees of freedom (and much of the evidence for the segregation of frontal-striatal loops 
comes from detailed studies of mammalian motor systems), but as we outline in more 
detail below, it also naturally extends to the control of a cognitive system with multiple 
independent resources. Furthermore, in each specific case of cognitive control that we 
propose below, this extension is consistent with the existing biological evidence. Figure 6 
above (right half) summarizes five major classes of control loops that we intend to model 
in TOSCA; each major control loop may be further broken down into separate finer-
grained loops as described below. 

 
• Action selection contingent upon multiple aspects of the internal state. One of the 

hallmarks of human cognition is its ability to adaptively exhibit arbitrary and novel 
behavioral contingencies. In prominent symbolic computational models of human 
cognition such as ACT-R and Soar, production rules play an important role in supporting 
this flexibility. More specifically, a critical property of production rules is that they allow 
action selection to be contingent upon any arbitrary features of the internally represented 
state (via the patterns in the "condition" side of the rules). Such functionality is directly 
supported in TOSCA by the massive inputs into frontal cortex from multiple posterior and 
anterior brain regions; this connectivity pattern and the neuro-anatomical evidence for it 
was described in Section 4.6. Figure 6 above (right half) depicts this broad contingency:  
each of the control loops starts with the activation of a set of potential actions that may be 
triggered by any aspect(s) of the internal state. These potential actions (or intentions) are 
represented in specific distinct frontal regions that participate in the segregated action 
loops described above. 

 
• Reinforcement learning of control. Although the learning of behavioral and cognitive 

control in TOSCA ultimately depends on the interaction of multiple learning mechanisms 
in the architecture (including episodic encoding, clustering, and sequencing), the direct 
basis for learning control is reinforcement learning (RL) as realized by TOSCA's intrinsic 
reward system. We believe that much of the power of our proposed architecture will 
derive from the interaction of RL with the representational capacities of the system 
described above in Section 5.1. The functional neuroanatomy of this reward system was 
described in Section 4.7; the parallels to abstract properties of algorithms for 
reinforcement learning are well known (Shultz et al. 1997). The specific properties of RL 
in TOSCA are as follows:  

 
• Intrinsic reward. All reward in the system is internally generated. “External reward” is 

translated from a sensation into a form of internal reward – there is no direct line from the 
environment to a reward signal. The internal rewards include intrinsic motivations or 
drives such as: novelty, mastery, and exploration. (See Section 4.7.2 above for the neural 
bases for these drives). These drives interact to determine the nature of both exploratory 
and task-driven behavior. The computational implications of this system for the nature of 
exploratory learning are significant and we draw them out in more detail in the next 
section below. 

 
• Exploitation of generalizations admitted by cortical representations. In the previous 

section we described two critical ways that generalization is supported by cortical 
representations:  via the emergence of hierarchical clustering realized by thalamocortical 
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loops, and via the self-organization of cortex into maps that support immediate similarity-
based generalization. TOSCA's RL system will adaptively exploit these generalizations:  
contingencies (more specifically, state-intention associations as described above) based 
on useful abstract categories will come to be reinforced often and thereby strengthened. In 
this way, the system will learn to recognize abstract features of the state that are 
particularly helpful in determining which actions lead to intrinsic reward. Furthermore, 
because the representations of action intentions are themselves clustered and sequenced, 
the system may also acquire abstraction action plans that are also reinforced according to 
their intrinsic reward. 

 
• Exploitation of predictions admitted by thalamocortical sequence learning. The previous 

section also described the sequence learning that continually operates over the learned 
categories; this sequence learning provides the functionality of prediction at multiple 
levels of abstraction (both semantic and temporal). This predictive capacity may then be 
exploited by the RL/reward system to significantly speed up learning in at least two 
different ways. First, the predictions as part of the internal state make the environment 
more observable to the agent. This can be a significant benefit because hidden state or 
equivalently partial observability significantly slows RL down (Singh et al. 2004). 
Second, the predictive capacity embodies an evolving probabilistic model of how the 
world evolves and can be used by the RL system to do "offline" learning or planning of 
state-action values which can lead to far better performance with far less "online" 
experience (Sutton 1990). 

 
• Parallel/cooperative reinforcement learning. Each of TOSCA's segregated, multiple 

control loops is independently modulated by the intrinsic reward system. This structure 
makes TOSCA an instance of the more general class of parallel reinforcement learning 
systems, in which multiple, collaborating control systems interact through some shared 
state to maximize a shared reward signal. The key computational feature of such systems 
is that the explosive combinatorics of all the possible action combinations remains 
implicit:   the control loops remain segregated, but cooperative behavior nevertheless 
emerges because each control loop adapts in the context of the behavioral consequences 
of the other co-adapting loops.  

 
5.2.2 The role of intrinsic reward in shaping control 
 
TOSCA's intrinsic reward system maps the rich internal state available to the agent to rewards 
that capture task-independent motivators (cf. Section 4.7) such as novelty, surprise, exploration, 
mastery (over environment), and like-me (by other agents in environment). These internal 
rewards lead the RL system in TOSCA to engage in exploration, play, and other behavior in the 
absence of explicit external reward (provided by some human specified task for example). As 
the agent engages in this behavior, the RL system learns a policy or rules of behaving that are 
captured in the form of the RL notion of options (Sutton et al. 1999). Options are temporally 
abstract actions that achieve subgoals and capture the intuitive notion of skills. Note that these 
skills could involve both external physical actions, for example an option could be about 
manipulating and mastering a physical object, as well as internal mental actions, for example an 
option could be about maintaining a particular episode of past experience in  the internal state of 
the agent. These options or skills once learned become available as primitive actions to the agent 
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and can then be chosen by the action generation and selection mechanism in the same way as 
pre-wired actions can be chosen by the RL system. Thus, more complex skills can be learned 
that use skills learned earlier as components. This allows the agent to incrementally learn a 
hierarchical set of skills that lead to increasing competence over its environment (Singh et al. 
2005) and this in turn makes the agent far more efficient at learning to solve externally specified 
tasks than would be possible without the internal reward based RL.  
 
5.2.3 Control of motor system with multiple degrees of freedom 
 
As discussed above there are multiple control loops in TOSCA and these loops allow both fine-
grained control of individual degrees of freedom as well as coordinated control over multiple 
degrees of freedom in the form of motor routines. Some basic motor routines or skills will be 
pre-wired into the agent but many will be learned using the intrinsic reward based RL system 
outlined above. For example, driven by the internal motivation to achieve mastery over an object 
in its environment the parallel RL system described above would learn a complex motor routine 
or skill that orchestrates multiple control loops over time to reach for and manipulate that 
physical object as well as maintain internal state needed to accomplish the manipulation. Once 
learned, these skills that coordinate multiple control loops become available as primitive action 
choices to the parallel RL system leading to even more complex and richer hierarchical control 
of the motor system. 
 
5.2.4 Control of cognitive resources 
 
The rich multi-modal representational and memory systems described in Section 5.1 provide 
more than the basis for overt behavioral contingencies: they are themselves cognitive resources 
under adaptive control. The nature of this cognitive control ranges from the modulation of 
representations of current perceptions to the use of multi-modal imagery to simulate novel 
dynamic situations. In short, the system has control over aspects of its own internal state. This is 
a critical computational feature because it allows the system to move beyond reactivity to the 
kind of open-ended behavior that depends on arbitrary aspects of the past as well as the ability to 
flexibly project into the future. Figure 6 above depicts five critical classes of cognitive control 
loops which we briefly describe below. In all cases, what mediates top-down control is 
associations from frontal cortical areas (both to posterior regions and other frontal regions) that 
represent the selected cognitive actions. These frontal action representations are in turn 
contingent upon internal state and the frontal-striatal selection mechanisms described earlier.  
 
Control of attention. The term "attention" has many meanings in psychology and cognitive 
neuroscience; we use it here to refer specifically to mechanisms of selective activation and 
enhancement of perceptual representations. For example, if it is adaptive for the system to 
attend to color features in certain situations, this may be accomplished by the selective 
enhancement of color features in lower-level perceptual representations which then bias the 
resulting higher-level categories to be more sensitive to color distinctions. Such changes in 
categorization then affect what new actions (internal and external) are selected next. In this way 
even relatively low-level attentional modulation has qualitative effects on behavior; the reward 
system reinforces those attentional contingencies that have positive effects.  
 
Control of multi-modal working memory. Most tasks require the integration of information 
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(either perceptual inputs or intermediate computational products) over time. There is 
considerable neural evidence that the persistence of such information over relatively short time 
periods (seconds to tens of seconds) depends critically on cortical representations (independent 
from the hippocampal subsystem)   In TOSCA this persistent information is represented in the 
same higher-level perceptual posterior areas where the stimuli were originally processed. The 
information is maintained by excitatory connections from persistent (attractor-based) 
representations in prefrontal cortex [cite]; these prefrontal regions represent the "action" of 
maintaining a specific type of perceptual input. Those maintenance action contingencies that 
lead to intrinsic reward are reinforced. In this way TOSCA will learn to maintain task-relevant 
information in the face of potentially interfering irrelevant stimuli [cite o'reilly]. 
 
Control of multi-modal imagery and "simulators".  
Another important emergent feature of TOSCA's architecture is the ability to reactive modality-
specific systems under cognitive control. Substantial evidence now supports this hypothesis 
(Barsalou (2003b); Barsalou, Simmons, Barbey, and Wilson (2003); Barsalou, Niedenthal, 
Barbey, and Rupport (2003); Niedenthal, Barsalou, Winkielman, Krauth-Gruber, & Ric (2005); 
Martin (2001); Pulvermüller (1999); Thompson-Schill (2003); Smith and Gasser (2005); and 
Thelen (2000).)  The frequent use of modality-specific systems by higher cognitive processes 
provides interesting new functionality. Barsalou (1999, 2003a, 2005) explains these emergent 
capabilities in terms of simulators, which can be naturally implemented via the sequences-of-
clusters mechanism that underlies the TOSCA architecture.   
 
Much research has shown that categories have statistically correlated features (e.g., wheels, 
steering wheel, and engine for cars; McRae, de Sa, & Siedenberg, 1997).  Thus, encountering 
different instances of the same category should activate similar neural patterns in feature systems 
(cf., Farah & McClelland, 1991; Cree & McRae, 2003).  Furthermore, similar populations of 
conjunctive neurons in the brain’s association areas—tuned to these particular conjunctions of 
features—should tend to capture these similar patterns (Damasio, 1989; Simmons & Barsalou, 
2003).  Across experiences of a category’s instances, this population of conjunctive neurons 
integrates the modality-specific features of a category, establishing a distributed multi-modal 
representation of it.  Thus, a simulator is a distributed circuit that includes brain areas for 
representing modality-specific content and integrating it. 
 
Conceptually, a simulator functions as a type:  It integrates the multimodal content of a category 
across instances, and provides the ability to interpret later individuals as tokens of the type.  
Consider the simulator for the category of cars.  Across learning, visual information about how 
cars look becomes integrated in the simulator, along with auditory information about how they 
sound, somatosensory information about how they feel, motor programs for interacting with 
them, emotional responses to experiencing them, etc.  The result is a distributed system 
throughout the brain’s feature and association areas that accumulates modal representations of 
the category. 

 
Control of declarative/episodic memory retrieval. Although episodic encoding may be 
automatic, there is substantial psychological and cognitive neuroscience evidence that episodic 
memory retrievals are often under deliberate control. In TOSCA this controlled retrieval is 
realized via a combination of several mechanisms. Retrieval starts with the assembly of retrieval 
cues accomplished by the control of multi-modal working memory and imagery (see above; 
mediated primarily by frontal-posterior projections). These representations serve as cues by 
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activating conjunctive episodic representations in the hippocampus via connections from 
posterior cortex to the hippocampus (see Section 4.5). But the hippocampus must be biased to 
process its inputs as cues for retrieval rather than new episodes to encode; this biasing happens 
via projections to the hippocampus from frontal regions that represent the specific intended 
cognitive action of retrieval [for precedents in the literature for such controlled retrieval see 
O’reilly, Eichenbaum]. Again, those contingencies for retrieval actions that lead to intrinsic 
reward are reinforced, so that the system learns how to make effective use of its own episodic 
memory system.  
 
Control of working memory for goals (abstract intentions). In the moment-to-moment control of 
behavior, the system faces the immediate problem of selecting the next best action to perform 
(across its multiple control loops). But as described above, this action selection may be 
contingent upon any feature of the internal state, including abstract features. Given that internal 
state is also under control—and crucially state that may persist for seconds to tens of seconds 
(see above)—the system can manipulate persistent internal state in order to direct its own 
behavior. In short, TOSCA will have the capacity to establish specific goal representations in 
working memory, and to learn when it is advantageous to do so. Functionally, such 
representations differ from the multi-modal working memory representations described above 
because they are exclusively about the control of future behavior and not about the temporary 
maintenance of relevant perceptual or imaginal information. Furthermore, the clustering over 
action sequences provides a suitable representational vocabulary for hierarchical goals because 
they are abstract intentions that already have associations with their specific constituent 
sequenced actions. 
 

5.2.5 Social learning  
 

In humans, learning rarely occurs save in the presence of other humans; from early development 
through adult stages, humans act predominantly in settings where other humans interact, largely 
via language.  Interaction conditions include both direct learning from being told, as well as 
mixes of partially-guided and partially-independent discovery.  In each case, balances must be 
struck between learning on one's own (via internal rewards and reinforcement learning) and 
learning from the social environment.  Following are some of the ways social interaction will 
help speed up the reinforcement learning of skills and tasks. 1) The visual attention of the agent 
could be directed by the human guide towards socially salient or task/goal relevant stimuli, 2) 
The human guide should be able to demonstrate or suggest actions (using language) that coupled 
with the intrinsic reward for being liked would lead to the agent to explore those actions, 3) The 
human guide may provide explicit reward to the reinforcement learning system inside TOSCA, 
and 4) The human guide may provide subgoals by pointing out landmark states or other novel 
states relevant to the overall task faced by the agent. All of these forms of social interaction 
directly impact the reinforcement learning system by either providing internal or external reward 
or suggesting salient states to pay attention to or providing salient actions to imitate. Together, 
these can significantly reduce the amount of data needed by the agent to learn competence over 
its environment. 
 
5.2.6 Language and control 
 
The previous section highlighted the important role of language in social learning. Here we 
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consider one specific avenue through which language has a dramatic impact on cognition and 
behavior: instruction taking. The ability to take instructions is computationally significant 
because it means that the system is immediately taskable, providing a way to move past the 
incremental adaptation that is characteristic of reinforcement learning. In this section we provide 
a sketch of how the architectural mechanisms in TOSCA will support instruction taking, 
focusing on the situation where the system acts immediately upon its received linguistic input. 
(Instruction taking situations involving greater temporal separation of the instruction and 
behavior would tap into the same mechanisms described here, but would additionally involve the 
long term declarative memory system). 
 
At a high level, instruction taking can be decomposed functionally into (a) comprehension of the 
linguistic input, which yields representations that are (b) interpreted to produce behavior. (These 
separate functions need not be strictly staged but may be tightly interleaved in the process of 
incremental understanding and behaving). The representational and functional capacities of 
TOSCA described above are sufficient to accomplish these functions and, crucially, to 
accomplish these functions with novel linguistic inputs. Briefly, the process would work as 
follows: 
 

• Comprehension happens as the linguistic input is incrementally processed and given a 
hierarchical representation as described above in Section 5.1 (which outlined how certain 
aspects of linguistic grammars may emerge from clustering and sequencing). The critical 
feature is that the linguistic input is represented at multiple levels of abstraction in a way 
governed by the (learned) grammar of the language, making explicit the structural (and 
thus indirectly the semantic) relations among the constituents parts of the input.  

• Task-critical aspects of these representations are selectively maintained as an assembly of 
cortical representations in the frontal inferior and posterior language areas so that they may 
guide future behavior (see Section 5.2.4 above on adaptive control of working memory). 
This provides an important link between comprehension and interpretation.  

• The interpretation of the instructions happens as these linguistic representations function 
as goals upon which action selection (in the multiple parallel loops) is contingent. Such 
linguistically-driven action selection is learned via the same reinforcement learning 
mechanisms described earlier. A crucial aspect of this learning is that it exploits the 
abstract generalizations admitted by the hierarchical representations (see section 5.2.1). 
This generalization, coupled with the fact that the interpretation takes place incrementally, 
will give rise to an interpretive skill that will transfer immediately to novel linguistic inputs 
that share critical structure. For example, the interpretation of simple instructions taking 
the form perform a specific action upon an object will consist of separate acts of orienting 
and grasping etc. that will be useful for a wide range of different specific actions. The 
most-often rewarded contingencies for such initial orienting will thus tend to abstract away 
(via the clustered representations) from the specific instructed actions. Similarly, 
contingencies for aspects of the control to accomplish the instructed action may abstract 
away from the specific linguistic label used to identify the object, because such abstract 
contingencies are reinforced more often. 

 
Thus TOSCA's ability to take instructions will arise from an interaction of the emergent, 
generative grammatical representations described above and the reinforcement-learning-based 
interpretation of linguistic representations that exploits the learned abstract grammatical 
categories. The reinforcement learning of the interpretive skill is part of the gradual, incremental 
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process of language acquisition, but it crucially yields immediate taskability. In short, language 
comprehension and use is a procedural skill operating on special types of representations, but 
acquired via general processing principles. This novel approach to instruction taking has the 
virtue that learning permeates every aspect of the processing, and we believe it will provide a 
compelling demonstration of the cognitive power that emerges from the interaction of TOSCA's 
basic architectural mechanisms. 

 6. Conclusion 

The goal of this paper is to describe our design for a new cognitive architecture based on the brain: 
TOSCA. With many cognitive architectures, a design is a straight forward description of 
component modules (such as procedural memory, working memory, bottom-up sensor 
processing), and a straightforward mapping of components onto high-level functionality. But in 
designing the brain, evolution took an interesting turn. Instead of having a parallel decomposition 
of functionality and structure, it built on a more primitive set of computational components that 
we presented in Figure 1 of Section 3. These primitives are tightly interconnected and form 
circuits (Section 4), so that functionality emerges from the interactions of these multiple circuits 
(Section 5).  
 
This organization starts to answer the question as to where is the “magic in human cognition” – it 
is not in any one module that AI hasn’t yet discovered, but it is in choosing the right set of 
building blocks and the connections between them. But above and beyond the static organization 
is the dynamics of the system where learning is ubiquitous. For learning to be successful, the right 
information must be made available, and this organization brings the information to the right 
places. For some components the learning is mostly bottom-up, as the system learns statistical 
regularities of its environment (as in learning clusters and sequences). For others it is associational 
where learning brings together co-occurring sensations across modalities. And for action, intrinsic 
reward drives the learning of control across not just external actions, but the system’s control of 
itself. This is the path for TOSCA, and the path to a new generation of brain-based cognitive 
systems.   
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Appendix: TOSCA Framework 
 
The TOSCA Framework is a toolkit that will be used to build one or more specific TOSCA 
architectures. The Framework should be general purpose and flexible so it supports the esign and 
experimentation on particular TOSCA architectures. This means the focus for the Framework is on 
generality and flexibility of infrastructure, while a particular architecture might be much more 
tightly constrained and make specific behavioral predictions. 
 
To ensure that any TOSCA architecture makes strong biologically-inspired commitments, the 
TOSCA Framework imposes a set of constraints on the architectural design. First, all processing 
must be mapped to a specific brain region. This ensures that an executing TOSCA system always 
makes a formal commitment to how all simulated processing would map to biological processing. 
Second, all communication between modules, within the simulation, must conform to known 
biological constraints based on the current literature. If the connections made within a TOSCA 
simulation violate the known connectivity properties of regions within the brain, these constraint 
violations will be explicitly detected by the Framework. 
 
In order to support the expression of these biological constraints, the processing within the 
Framework must have clearly defined boundaries. The proposal is to divide the elements of the 
Framework into two categories: 

• Function Modules 
• State Variables 
 

Function modules perform processing and state variables are used for communication between 
modules. Modules receive inputs from a set of state variables and generate outputs to one or more 
state variables.  
 
The critical constraints are that values can only be persistently stored within state variables and all 
state variables must be mapped to a brain region. Together, these constraints imply that for any 
model implemented within the TOSCA Framework we can determine how the model is connected 
and what commitments the model makes for regions of the brain where processing occurs and how 
those brain regions are connected. Those model commitments can then be reviewed against 
current knowledge of biological processing to determine the quality of the fit. 
The relationships between function modules and state variables and how they map to biological 
processing are represented through three logical graph structures within the TOSCA Framework: 

1. Functional Connectivity Graph 
2. Brain Mapping Graph 
3. Brain Connectivity Graph 

 
Functional Connectivity Graph 

This graph establishes a mapping of state variables to input and outputs of function modules. It 
defines the flow of data through the simulation. 
 
For example, Figure A1 shows module M1 receiving inputs from state variables A, B and C and 
generating outputs for A and D. Module M2 receives input from D and generates output for C. 
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Figure A1: Functional Connectivity Graph 

This graph is implicitly defined by the inputs and outputs from function modules. It is not 
explicitly represented in the Framework as a separate data structure, although we will have tools 
that can extract this graph for display or analysis based on examining the connections between 
modules and state variables. 
 
State variables can also be used to provide private storage where only a single function module 
ever accesses the state variable. Function modules are potentially executing asynchronously and at 
a range of time scales. 
 
Some key properties of this graph are: 
 

• Flexible replacement of modules and state variables 
A module or state variable can be replaced with a different implementation with minimal 
impact on other modules and variables. This supports experimentation by swapping in 
different implementations for parts of the overall architecture. It also supports incremental 
and distributed development of the entire architecture as placeholders can be used until a 
full component has been developed and can replace the placeholder. 
 

• State variables are used for all persistent data 
All data that persists from one cycle of the simulation to another (i.e. that is not temporary 
storage used in a calculation) should be represented by a state variable. 
Some examples of state variables are: 

o A frame buffer of video input 

o Connection strengths in a neural network 

o Variables used to control search 

o Matrix or vector of floating point values 

o Production rules (condition -> action rules) 

This property relates to the brain mapping graph (below). Only state variables would be 
mapped onto brain regions. There would be no need to map function modules to brain 
regions explicitly as that mapping would be implicit in the state variables. 
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Brain Mapping Graph 

The brain mapping graph establishes how function modules and state variables are mapped to 
different regions of the brain. In the current design only state variables are explicitly mapped to 
brain regions. Function modules are mapped to regions based on the state variables they use 
(FFigure A2). 
 
Unlike the functional connectivity graph, the brain 
mapping graph will be explicit. There will be a specific 
data structure in the Framework that defines how each 
state variable is mapped to a region of the brain. 
The mapping: 

• Will be complete 
All state variables must map to some brain region. 
This ensures that there’s an explicit mapping from a 
running simulation to the brain. 
 
• May include unspecified regions 
A state variable may have an undetermined location 
but this must be explicitly indicated in the mapping. 

F
Figure A2: Brain Mapping Graph 

Brain Connectivity Graph 

The functional connectivity graph together with the 
brain mapping graph imply a brain connectivity graph 
(e.g.           Figure A3). 
 
That is, by examining how the state variables and 
function modules are connected together and how 
they are mapped to brain regions makes a prediction 
about how the brain regions are connected. This 
graph can then be tested against known constraints 
for how brain regions are actually connected. These 
constraints will be explicitly represented within the 
framework and the brain connectivity graph will be 
deduced automatically from the brain mapping graph 
and the functional connectivity graph.  

 

          Figure A3: Brain Connectivity Graph 
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Function Modules and Time 

Function modules may execute asynchronously and at different time scales. Two communicating 
modules may be executing on a single machine or across a network between a cluster of machines. 
The TOSCA Framework provides an abstraction layer over these details, allowing each module 
(and set of state variables) to be defined in terms of its own temporal constraints, with the 
Framework handling the details of communication and synchronization between modules and 
variables. 
 
Figure A4 shows an example of the capabilities provided by the Framework. Modules M1 and M2 
are executing on a 1ms and 5ms time scale respectively. Every 50ms M2 posts a result to the state 
variable D which is consumed by M3. This synchronization is achieved through two different 
clocks – T1 is the master clock for the simulation and T2 is a local clock used only to synchronize 
the behavior of M1 and M2. 

 
Figure A4: Local Clock Example 

 
Each module expresses the constraints it is placing on the overall flow of time through the simulation by 
making calls an appropriate clock. Based on these constraints, the clock(s) determine when simulation time 
can advance and by how much before further processing must occur in a module. Each module is unaware 
of the complexity within the entire system and deals only in the local constraints that concern it (e.g. M2 
reads input from C every 5ms and outputs to D every 50ms). Additionally, everything within the dotted line 
shown in Figure A4 could be collected into a larger function module. This allows hierarchies of modules to 
be built and used in experimentation. For instance, two different implementations of a particular function 
module (the first a simple module and the second a complex collection of submodules, variables and clocks) 
could be tested against each other without modifying the rest of the simulation. The sample code below 
shows the detail of how a function module would appear within the Framework if written in C++ (the actual 
Framework will support multiple implementation languages): 
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 while (!m_Quit) 
 {  
  // Wait for a signal from the clock (if time driven) 
  // or from an input changing (if event driven)  
  WaitForNextSignal() ;  
 
  // Process any events we were sent while sleeping 
  ProcessEvents() ; 
 
  // Get the current clock time. This value can't change until 
  // we signal that it's ok for the clock to advance. 
  Time time = GetClock()->GetTime() ; 
 
  // Get the value of the inputs at the current time 
  Value a = GetInput("A")->GetValue(time) ; 
  Value b = GetInput("B")->GetValue(time) ; 
  Value c = GetInput("C")->GetValue(time) ; 
 
  // We've read our inputs so the clock can continue 
  // but it can't go beyond the time when we generate output. 
  // Changing the boundary time allows the clock to advance. 
  GetClock()->ClockCannotAdvanceBeyond(this, time+4) ; 
 
  // Perform a calculation based on the inputs (could be long time) 
  Calc(&a, &b, &c, &result) ; 
 
  // Generate output 5ms after this function module was triggered 
  GetOutput("A")->SetValue(&result, time+5) ; 
 
  // Set up our next triggering event 
  GetClock()->RegisterWakeup(this, time+10) ; 
 
  // Clock can now advance freely up to our next trigger event 
  GetClock()->ClockCannotAdvanceBeyond(this, time+10) ; 
 } 
 

The module initially waits for a signal (either a specific amount of time passing or an input variable 
changing) before beginning processing. It receives any notifications of new system events before 
reading the current input values for state variables A, B and C. While reading its inputs the simulation 
clock is kept at a known time, ensuring that the inputs remain valid. Once the module has read all of its 
inputs it signals that the clock can now advance but not beyond the point when the module will generate 
output. The module computes the output and posts the new value (in this case in a feedback loop to 
variable A, 5ms after it awoke). It then requests its next wakeup signal—in this example by asking the 
clock to signal it when 10ms have passed and releases the clock to move up to that new time. 
 
This example shows a module that is time-driven, where it’s processing is triggered by the flow of time. 
A very similar logic is used when the module is event-driven, where it’s processing is triggered by the 
change of an input. The module registers in advance with the input variable to request notification when 
the variable changes state and then engages in similar processing to the time-driven example shown 
here. 
 
The Framework maintains the actual location of all state variables, which could be on different physical 
machines, as well as determining the correct flow of simulated time within the constraints each module 
imposes. The specific location of a state variable can be changed without affecting existing modules and 
the details of how a module is implemented can be changed without affecting other modules as long as 
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its inputs and outputs are not significantly changed. 
 
Implementation Flexibility 

The Framework will allow modules to be written in a variety of different languages and then 
combined together to form a complete model. This is achieved by implementing the core 
functionality in C/C++ and then machine generating interfaces in other languages. We have other 
projects that have adopted this method and support 5+ languages in this manner. This cross-
language capability allows each researcher or team to adopt the language that best supports their 
work and yet still create an integrated system. 
 
The Framework will also support a range of runtime configurations, from a single process 
executing the entire simulation, to a series of processes using shared memory within a single 
machine and up to a cluster of machines each executing a part of the entire simulation. This 
flexibility is achieved by basing all of the communication on message passing between state 
variables and then abstracting over the details of how those messages are passed—e.g. by 
accessing a local pointer or by sending a message over a socket to a different machine. This 
abstraction allows the hardware infrastructure to scale up as the requirements of a particular task 
increase, without having to redesign modules or have different implementations for different 
runtime configurations. 
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